
CS/ECE/ISyE 524 Introduction to Optimization Spring 2017–18

22. More models, QAP and SOS

� Quadratic assignment problems

� SOS1 constraints

� SOS2 constraints

� General piecewise linear functions

Laurent Lessard (www.laurentlessard.com)

www.laurentlessard.com

Quadratic assignment problems (QAP)

Two big classes of problems seen so far:

� GAP: Assign jobs to machines. Each assignment has a
price, each machine has a fixed cost and a max capacity.

� TSP: Find the optimal sequence of items (or cities).
Each possible transition has an associated cost.
(probably the most famous integer program)

One more important class of problems:

� QAP: Assign facilities to fixed locations. The facilities
have known communication requirements and incurred
costs depend on the distances between the facilities.
(second most famous integer program – harder than TSP)

22-2

QAP example: shopping mall

A small shopping mall has four shop locations. The walking
distance, in feet, between all pairs of locations are shown below.
Four shops, designated A, B, C, D, are to be assigned to the four
locations in such a way that customers traveling between pairs of
shops will not walk too far. We have data on the number of
customers per week that travel between the shops, shown below.

Distance 1 2 3 4

1 0 80 150 170
2 0 130 100
3 0 120
4 dij 0

Flow A B C D

A 0 5 2 7
B 0 3 8
C 0 3
D fij 0

� let xij = 1 if shop i is in location j .

22-3

QAP example: shopping mall

� Each shop can only be in one location:
L∑

j=1

xij = 1 for i = 1, . . . , S

� Each location can only contain one shop:
S∑

i=1

xij = 1 for j = 1, . . . , L

� Cost depends on pairs of facilities! If shop i is in location j
and shop k is in location `, then between them we have a
flow of fik and a distance of dj`. The total cost is:

1

2

S∑
i=1

L∑
j=1

S∑
k=1

L∑
`=1

fikdj`xijxk`

22-4

QAP example: shopping mall

minimize
x

1

2

S∑
i=1

L∑
j=1

S∑
k=1

L∑
`=1

fikdj`xijxk`

subject to:
L∑

j=1

xij = 1 for i = 1, . . . , S

S∑
i=1

xij = 1 for j = 1, . . . , L

xij ∈ {0, 1}

� cost is quadratic in the variables! Can we linearize?

� define new binary variable: zijk` = xijxk`

22-5

QAP example: shopping mall

minimize
x ,z

1

2

S∑
i=1

L∑
j=1

S∑
k=1

L∑
`=1

fikdj`zijk`

subject to:
L∑

j=1

xij = 1 for i = 1, . . . , S

S∑
i=1

xij = 1 for j = 1, . . . , L

xij ∈ {0, 1}
zijk` = xijxk`

� Equivalent to: (zijk` = 1) ⇐⇒ (xij = 1) ∧ (xk` = 1)

22-6

QAP example: shopping mall

How do we model: (zijk` = 1) ⇐⇒ (xij = 1) ∧ (xk` = 1) ?

� we saw this when we discussed logic constraints!

I (=⇒): xij ≥ zijk` and xk` ≥ zijk`
I (⇐=): xij + xk` ≤ zijk` + 1

22-7

QAP example: shopping mall

minimize
x ,z

1

2

S∑
i=1

L∑
j=1

S∑
k=1

L∑
`=1

fikdj`zijk`

subject to:
L∑

j=1

xij = 1 ∀i

S∑
i=1

xij = 1 ∀j

xij ≥ zijk` and xk` ≥ zijk` ∀i , j , k , `
xij + xk` ≤ zijk` + 1 ∀i , j , k , `
xij , zijk` ∈ {0, 1} ∀i , j , k , `

� Julia code: QAP.ipynb
22-8

http://nbviewer.jupyter.org/url/www.laurentlessard.com/teaching/cs524/examples/QAP.ipynb

QAP example: circuit layout

� Place n electronic modules
in n predetermined positions
on a backplate.

� We are given a wiring
specification that tells us
how the various modules
must be connected.

� Identical to the facility location problem:

I fij is the number of wires between module i and module j

I dij distance between positions i and j on the backplate.

I Minimize total length of wire used.

22-9

Special ordered sets

� Another type of constraint that is standard among many
solvers is called the special ordered set (SOS).

� We saw one type of SOS constraint in the context of a
variable belonging to a discrete set of values. There are
other types of SOS constraints (we will see them next!)

� All SOS constraints can be implemented using logic tricks
but some solvers also allow you to specify them explicitly.
Only two reasons you would ever want to do this

I It makes your code run faster

I It makes your code easier to understand

� Some solvers can automatically detect SOS constraints.

22-10

SOS1 (type 1) constraint

SOS1 constraint: The variables {x1, . . . , xm} satisfy an
SOS1 constraint if at most one of them is nonzero.

� An SOS1 constraint represents a multiple-choice notion.

� Standard use: representing a discrete-valued function

22-11

SOS1 (type 1) constraint

x1 x2 x3 x4 x5 x6
0

1

2

3

4
a1

a2

a3

a4

a5

a6

x

y

� Let (xi , ai), i = 1, . . . ,m be the admissible (x , y) pairs.

� write: x =
∑m

i=1 xiλi and y =
∑m

i=1 aiλi .

� constraint: exactly one of the λi is equal to 1, the rest are
equal to zero.

22-12

SOS1 constraint

Using SOS1 constraint

y =
m∑
i=1

aiλi

m∑
i=1

λi = 1, λi ≥ 0

{λ1, . . . , λm} is SOS1

Using algebraic forumlation

y =
m∑
i=1

aiλi

m∑
i=1

λi = 1

λi ∈ {0, 1}

� The λi are real (not binary) in the SOS1 formulation

� Solver will still use binary variables internally, of course

� IJulia example: SOS.ipynb

22-13

http://nbviewer.jupyter.org/url/www.laurentlessard.com/teaching/cs524/examples/SOS.ipynb

SOS2 (type 2) constraint

SOS2 constraint: The variables {x1, . . . , xm} satisfy an
SOS2 constraint if at most two of them are nonzero. Also,
nonzero elements must be consecutive.

� SOS2 constraints are typically used to represent
piecewise-linear functions.

22-14

SOS2 (type 2) constraint

x1 x2 x3 x x4 x5 x6
0

1

2
y
3

4
a1

a2

a3

a4

a5

a6
(x , y)

x

y

� Let (xi , ai), i = 1, . . . ,m be the transition points.

� x =
∑m

i=1 xiλi and y =
∑m

i=1 aiλi with
∑m

i=1 λi = 1.

� If xi < x < xi+1 then λi + λi+1 = 1 and the other λj are
zero. Then, x = λixi + λi+1xi+1 and y = λiai + λi+1ai+1

22-15

SOS2 (type 2) constraint

How do we represent the constraint that at most two of the
variables {λ1, . . . , λm} are nonzero, and nonzero variables
must be consecutive?

� Let {z1, . . . , zm−1} be binary with
∑m−1

i=1 zi = 1.

� If zi = 1, then λi and λi+1 can be nonzero.

� In other words: if zi−1 and zi are zero, then λi = 0.

x1 x2 x3 x4 x5 x6

z1 z2 z3 z4 z5

x

22-16

SOS2 constraint
SOS2 constraint

y =
m∑
i=1

aiλi

m∑
i=1

λi = 1, λi ≥ 0

{λ1, . . . , λm} is SOS2

� Extra binary variables
needed in algebraic
formulation.

� Solver still uses binary
variables for SOS2.

Using algebraic forumlation

y =
m∑
i=1

aiλi

m∑
i=1

λi = 1, λi ≥ 0

λ1 ≤ z1

λi ≤ zi−1 + zi , i = 2, . . . ,m − 1

λm ≤ zm−1

m−1∑
i=1

zi = 1, zi ∈ {0, 1}

22-17

General piecewise linear functions

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

segm
ent

1

segment 2
se
gm

en
t
3

se
gm
en
t
4

x

y

We may have:

� segments overlapping

� semi-infinite or
infinite segments

� holes in the space of
x coordinates

For each segment, record:

� an endpoint (x , f)

� the x-length `

� the slope g .

x f ` g

segment 1 3 2 −∞ −1

segment 2 2 1 4 0

segment 3 6 1 1 3

segment 4 8 2 ∞ 1
22-18

General piecewise linear functions

� The segment i has two variables associated with it:

I zi , a binary variable that selects whether segment i is active
or not. Note that the {z1, . . . , zm} are SOS1.

I λi , a nonnegative real variable that chooses how far along
segment i we are situated. Note that 0 ≤ λi ≤ |`i |.

� The general point (x , f) on the function is given by:

I x =
∑m

i=1(zixi + sign(`i)λi), f =
∑m

i=1(zi fi + sign(`i)giλi)

� We also require some constraints:

I zi ∈ {0, 1} and
∑m

i=1 zi = 1

I 0 ≤ λi ≤ |`i |.
I if zi = 0 then λi = 0. (this is tricky!)

22-19

General piecewise linear functions

How do we impose the constraint that if zi = 0 then λi = 0 ?

� If `i is finite, then we have the bound 0 ≤ λi ≤ |`i | so we
can use the standard fixed cost trick:

λi ≤ |`i |zi

� If `i = ±∞ then this won’t work!

� For the infinte case, we can use the constraint:

{λi , 1− zi} is SOS1

There is no upper bound for λi (and so we can’t model
algebraically) but solvers can nonetheless implement this
constraint efficiently.

22-20

	More models, QAP and SOS
	Quadratic assignment problems
	SOS1 constraints
	SOS2 constraints
	General piecewise linear functions

